
FITS Viewer and VMI Analysis

Version 4.0

FITS Viewer and VMI analysis, Version 4.0. This program was written to display and analyse

2−dimensional data, in particular for the analysis of Velocity Mapped Imaging (VMI) data and

2−Dimensional Laser Induced Fluorescence (2D-LIF) data. The program uses the Flexible Image

Transport System (FITS) file format for loading, processing and saving of images, although images

stored as text may also be imported. The program incorporates many functions to process VMI

images. In particular, routines are provided to perform the Inverse Abel Transform on experimental

images and generate polar coordinate images of the raw and transformed data. In addition, for raw

VMI images that are affected by non-circularity due to stray electric and magnetic fields, routines

are provided to determine such distortions and produce a circularised (undeformed) image. This

program has been developed and used at Flinders University since 1998 for analysis of VMI and

2D-LIF data. The circularisation algorithms used in this program are described in [J. R. Gascooke,

S.T. Gibson and W.D. Lawrance, “A "circularisation" method to repair deformations and determine

the centre of velocity map images”, J. Chem. Phys. 147, 013924 (2017) (DOI 10.1063/1.4981024)].

When this program is used to analyse data used in publications, it should be referenced as [J.R.

Gascooke and W.D. Lawrance, FITS Viewer and VMI Analysis: A Program for Analysing and

Circularising VMI Images, DOI 10.4226/86/59278ab872838].

Disclaimer:

This program was first developed in 1998 and continuously modified/improved over the last 19

years. Although a lot of effort has gone into making the program stable and correct, it hasn’t been

tested under all conditions and possibilities. Therefore, it cannot be guaranteed that the program

will do what you want it to do! Use the program at your own risk. If, through using this software,

you become aware of bugs then please contact the author, Jason Gascooke via email:

Jason.Gascooke@flinders.edu.au. Suggestions for possible improvements would also be useful, but

cannot be guaranteed to be incorporated.

FITS Images

This software uses the “Flexible Image Transport System” (FITS) file format for processing images.

This is a file format popularised by the astronomy community and has several advantages over

other image file formats. The file structure has a readable header (ASCII) that is used to describe

the type, size, calibration of the image and any other desired information about the image. The

image format allows up to 999 dimensions of data, and the data can be 8, 16, 32, 64 bit integer data

or 32, 64 bit floating point data. This program can read in all these dimensions if contained in the

image but will only display the first two dimensions as an image with the remaining dimensions set

to their first element. Support for 64 bit integer data is not yet available in this program.

The FITS format is different to other image formats in that there is no information in the file

describing how to display the image (i.e there is no colour information). Instead, the purpose of the

FITS file format is to contain data, and it is the purpose of a FITS viewer to present the data in the

form of an image. (Viewers do have the option of incorporating their own display information in the

file header, but this is program dependant).

It is generally accepted that 2-dimensional FITS data should be displayed in the 1st quadrant of a

Cartesian plane. That is, the origin located at the lower left corner, and the axis increasing up (y

axis) and to the right (x axis). Also, it is accepted that the 1st dimension of data relates to the x

direction and the 2nd dimension is the y direction. These conventions aren’t prescribed in the FITS

standard since FITS images contain physical data as pixels (voxels) and not a display image.

Unlike most image formats that have their origin of (0, 0) at the top right corner, the origin for fits

coordinate is (1, 1) and, as just mentioned, is located at the lower left corner. This must be taken

into account when comparing pixel positions with other programs. Moreover, for a FITS pixel, the

axis index is accepted to be the centre at the centre of the pixel, so the (1, 1) pixel extends in the x

and y directions from 0.5 to 1.5. In computer graphics, the origin pixel (0, 0) ranges from 0 to 1 in

the x and y directions. This is shown diagrammatically below:

 FITS coordinates Standard computer display coordinates

For more information on FITS specifications, see:

FITS Working Group, “FITS Standard 3.0” (2008) accessible at http://fits.gsfc.nasa.gov/standard30/fits_standard30.pdf

E.W. Greisen and M.R. Calabretta, “Representations of world coordinates in FITS”, A&A, 395, 1061 (2002). DOI:

10.1051/0004-6361:20021326

Running the Software

The program is a stand-alone executable that doesn’t require additional installations. It should run

under all Windows operating systems starting with Windows 98. The program doesn’t save any

information to the registry nor does it save a configuration file.

The software can copied to any directory and ran from this location (if permissible by local

permissions). Just double click on the program from within windows browser, or make a short cut

on the desktop or Start menu. It is useful to associate files with extensions ".FITS" and ".FTS" to

this program, so you can simply double-click on a FITS image file and load it into the viewer.

When running, the program can display a number of images within the main window. An example

screenshot of the program is shown below, where two images have been loaded.

1 2 3 4 5

1

2

3

4

5

0 1 2 3 4

4

3

2

1

0

http://fits.gsfc.nasa.gov/standard30/fits_standard30.pdf

Side ToolBar

Image data type and dimensions

Button to display the

FITS Header

Slider to change the

maximum display value

Slider to change the

minimum display value
Minimum slider value

Minimum display value

Maximum slider value

Maximum display value

Colour scheme look up table
Reverse colour scheme
Use logarithm transfer

function
Logarithm transfer function

factor

Superimpose a circle on the

image.
Display graph of crosshair

or rectangular selection

Crosshair or

rectangular selection

“Image Info” section contains:

 – the type of data that is displayed (i.e. number of bits and integer vs float),

 – a button to display a window with the current FITS header (see section on FITS headers)

“Image Intensity” section contains:

 – controls to modify the appearance of the selected image.

The minimum and maximum display values refer to the array values (intensities) in

the image that correspond to the minimum and maximum colours in the colour table.

The display values can be changed by sliding the slider bar up and down. Note, that

the minimum slider value can’t go above the maximum slider bar value.

Min and max display values can be entered manually followed by pressing the

return/enter key.

The min and max limits for the slider bar values can be modified by manually entering

the value in the “Maximum/Minimum slider value” followed by the return/enter key.

When an image is initially displayed, the minimum and maximum slider values are set

to the minimum and maximum values in the array data of the image.

 – buttons to change minimum and maximum display values to predefined values, either to

the min and max values in the image via the “MinMax” button, or a best guess using

statistical information derived from the image by using the “Auto” button.

“Colour Table” section contains:

 – dropdown box to allow selection of different colour look up tables.

 – checkbox to reverse the order of colours in the lookup table.

 – checkbox and slider to select a logarithm transfer function, and the a logarithm factor that

describes the amount of “logness’ of the transfer function (a value of 1.0 represents a linear

function and large values cause the colours change much more rapidly for low intensities in

the image). Note that after selecting log function, the maximum slider value may need to be

increased significantly to obtain a suitable image.

Underneath the above sections are buttons to activate image tools, including:

 – crosshair button allowing a cross to be placed on the image. The position of the cross can

be moved by left-clicking the mouse, or by using the keyboard. Left, right, up and down

arrow keys move the crosshairs by 1 pixel. If the Ctrl key is held down at the same time as

pressing left, right, up or down then the crosshairs move by 10 pixels.

 – rectangular selection button allows a rectangle to be selected on the image by left clicking

the mouse and dragging a rectangle over the image while holding the left mouse button

down.

 – graph button that displays a graph below and to the right of the image that plots the cross-

section if crosshairs are selected, or, when rectangular selection is used the projection of the

data in the rectangle is plotted. The graph can be exported by right clicking in the graph

window and selecting “Save Plot”.

 – button to superimpose a circle on the image, which can be used as a guide to determine

approximate centre and radius of circular images. The position of the circle is moved by 1

pixel at a time by pressing left, right, up and down arrow keys. If the Ctrl key is held down

at the same time as pressing left, right, up or down then the crosshairs move by 10 pixels.

The radius of the circle is changed by holding down the shift key while pressing the

left/right keys (and the ctrl key to increase the radius in bigger steps). Values of the circle

centre and radius is given in the bottom status bar.

Lower Information Bar

The current cursor position, or crosshair position on the image, and its associated data value

(intensity) is displayed in the lower information bar. Since the FITS file format allows calibration of

each axis as well as the values in the image array (intensities) the raw position and array value is

shown, along with their calibrated values (including units). Note that FITS images have their origin

as (1, 1) and it is customary (but not in the standard) that the origin is located at the lower left pixel.

This is different to the usual display coordinates where (0,0) refers to the top left pixel.

Clicking on the “Axis Parameters” button brings up a window that allows the setting of calibration

information, such as that displayed below. These allow the changing of FITS header values

associated with axis calibration.

Program Variable FITS keyword

Label CTYPEn

Units CUNITn

Scale CDELTn

Reference Pixel CRPIXn

Value at Reference Pixel CRVALn

In this example the y axis represents Absorption Wavelength in units of nm. Each pixel steps by

0.0010016 nm. Pixel number 1 (the first pixel) is the reference pixel and corresponds to a

wavelength of 270.11948 mn. Note that the reference pixel need not be an integer value. In the top

Calibrated x and y values

FITS index x and y values.

Pixel (x = 1, y = 1) refers to

bottom left corner pixel.

Change axis calibration

Display x and y coordinates.

Pixel (x = 0, y = 0) refers to

top left corner pixel.

Calibrated value for

the current pixel

Raw value in the

image data array Intensity

calibration

right corner is a reduced size image with the calibrated values of the image extremes displayed

underneath and to the left of the image.

The calibrated axis value at a particular index is given by:

 Calibrated Value = (index − CRPIXn) * CDELTn + CRVALn

Note that the first pixel has an index = 1.

Clicking on the “Intensity Parameters” button produces a window that allows the calibration af the

data array (intensity) values. These allow the changing of FITS header values associated with

intensity. This is really only of any benefit for integer data.

Program Variable FITS keyword

Scale BSCALE

Offset BZERO

Units BUNIT

In this example, the data represents temperature, where the array values (intensities) are integers

that are converted to values in Kelvin by multiplying by 0.1953125 and adding a 273.15K offset.

Menu Items

File Menu

 New Disabled.

 Open… Allows selection of a FITS image to view.

 Close Closes Image.

 Save Disabled.

 Save As… Allows user to save the FITS image.

 Import Data Allows the importation of a greyscale bitmap file (*.BMP) or from an ASCII

file containing delimited text. The delimiter may be a space, comma, or a tab.

Header lines that don’t start with a numerical value are ignored.

 Print Prints the image in a rudimentary way. It is suggested that the copy function

is used instead and the image pasted into an application capable of printing

images.

 Exit Exits the program

Edit Menu

 Cut Disabled.

 Copy Copies the current image bitmap into the clipboard so it can be pasted into

other applications.

 Paste Disabled.

Display Menu

The Display menu contains a menu item to display alternate units in the lower information bar.

Currently there is only one option and that is to display nm units in cm
−1

. When selected a check

box will appear in the lower information bar to turn on and off unit conversion.

Data Manipulation

 Invalidate Selection Invalidates the current point (for crosshair selection) or points within a

rectangular region (for rectangular selection) by changing the data

array value (intensity) to NAN (Not A Number).

 Clear Selection Zeros the current point (for crosshair selection) or points within a

rectangular region (for rectangular selection).

 Statistics… Shows a window giving statistics about the image. If a rectangular

region is selected, then the information only pertains to data points

within the rectangle.

Image Manipulation

 Extract Region… Brings up a window that allows the user to extract a region from the

image. If a rectangular selection is active, then the window pre-

populates the values with those of the rectangular selection.

 Swap x and y Axes Switches the x and y axis. The pixel at the lower left corner, i.e. (1,1)

remains the same. Axis calibrations are preserved.

 Flip Vertically Flips the image vertically. Axis calibrations are preserved.

 Flip Horizontally Flips the image horizontally. Axis calibrations are preserved.

 Rotate Clockwise Rotates the image clockwise. Axis calibrations are preserved.

 Rotate Anticlockwise Rotates the image anticlockwise. Axis calibrations are preserved.

 Horizontal Shear… Displays a window that allows an image to be sheared (currently only

horizontal shearing is available). Shearing is useful in the analysis of

2 dimensional laser induced fluorescence images.

 Combine 2 images… Opens a window to allows two FITS images to be combined into a

single image. Many options exist, including the use of FITS

calibration to position 2 images relative to each other.

2D-LIF (2-dimensional laser induced fluorescence)

 Re-map axes (nm <−> cm-1) Converts axes that are in nm to axes in cm
−1

 via a nonlinear

transformation (and vice versa).

VMI (velocity mapped imaging)

 Set Centre… Allows setting of the centre of the VMI image.

 Inverse Abel Transform… Generates the Inverse Abel transform image.

 Create Polar Coordinate Image… Generates a polar coordinate image.

 Divide by r Polar Coordinate Image… Divides the intensity of each pixel in image by the

radial value (assumes the radial coordinate is in the x

direction and uses the axis calibration to determine

r).

 Trig Fit Polar Coordinate Image… Fits a single wavy line in a polar coordinate image to a

series of sines and cosines.

 Circularise Image… Corrects radial distortions of an image using a series of

sine and cosine deformation parameters.

Window

 Cascade Cascades all open windows within the viewer.

 Tile Tiles all open windows within the viewer.

 Minimise All Minimises all windows.

Help

 About Provides more information about the program.

FITS Header Information

The start of a FITS file contains a ASCII readable header. The FITS specification demands that

some keywords are mandatory.

A typical example is given below:

In this example, the SIMPLE keyword is set to the Boolean value TRUE, indicating it is a standard

FITS format file. The BITPIX keyword refers to the type of data in the image. Positive numbers

contain integer data and negative numbers contain floating point data. The absolute value of this

number defines the number of bits in each value. Thus, the above image contains 32 bit floating

point data. NAXIS defines the number of axes, which can range from 1 to 999. NAXIS1 and

NAXIS2 defined the number of indices in each axis (ie width and height for a 2D image).

CDELTn, CRPIXn and CRVALn, refer to calibration parameters of the axes (see the Axis

Parameters section above). Axes can also have labels and units as given by CTYPEn and

CUNITn. Other keywords in the FITS specification may appear in the header, as well as custom

keywords (for example centres of VMI images is given by the VMI_CX and VMI_CY keywords in

the program).

More generic information can be included via HISTORY, COMMENT and blank keywords that

allow information about the image, including how it was generated to be saved within the FITS file.

The header must end with the END keyword.

Circularisation of VMI images

In this section we will show how to apply circularisation to a very distorted synthetic VMI image.

1) Determine a best guess estimate for the image centre. There are numerous methods that could be

used, for example one could simply take the average of the ring coordinates at the top, bottom, left

and right, or least squares fitting several points chosen around a ring to the equation of a circle.

Alternatively a rough centre can be determined using the circle feature in the program and manually

moving the circle position and radius such that it looks centred around a ring. This is done in the

image below, and the centre of the circle (and radius) is given in the bottom status bar. See

discussion of the side tool bar above for more information on the circle feature.

Only an approximate image centre is required to start with, since the circularisation algorithm

returns a better estimate of the image centre.

2) Set the centre of the image. This step is optional, but will save you having to constantly re-enter

the centre in future processing steps. By setting a centre, two keywords (VMI_CX and VMI_CY)

are added to the image header, and used in other VMI analysis. From the menu, select

 VMI→Set Centre…

The above dialogue box appears and the image centre coordinates can be entered. Note that the

coordinates do not have to be integers. A check box is also on the dialogue box that allows a

calibration to be put on the image so that the x and y cursor coordinates displayed on the lower

information bar are relative to the image centre.

3) Generate a polar coordinate plot of the distorted image. Select from the menu

VMI→Create Polar Coordinate Image…

If an image centre was set in Step 2, then it is automatically populated in the window, otherwise

default values are used and you will need to manually enter the centre. The step sizes (bin sizes) for

the radial and angular coordinate can be changed. A radial step size of 0.5 pixels and angular step

of 2 degrees generally gives a good image. There are 3 transformation methods to choose from:

Inverse Transform – Interpolation :

For each (r, θ) pixel on the polar coordinate image, the corresponding (x, y) value on the

original image is determined by 2-dimensional linear interpolation of the original image. The

value is scaled by the Jacobian of the transformation to account for the larger drdθ area as r

increases. However, even with this Jacobian applied, interpolation can result in the integrated

intensity of the polar coordinate image being different to the original image (in principle, it

should be the same – you can’t lose electrons!). This method is quick, and provides a smooth

transform if the original image is smooth. It gives bad results on large noisy images.

Forward Transform – Simple pixel-to-pixel :

For each (x, y) pixel on the original image, the corresponding (r, θ) polar coordinate is

determined and the intensity of the (x, y) pixel is copied over to the (r, θ) pixel in the polar

coordinate image. This algorithm is a quick and preserves the integrated intensity of the

original image. However, the algorithm will introduce artefacts due to pixellation, where

some (r, θ) pixels in the polar coordinate image don’t have corresponding pixels in the (x, y)

original image.

Forward Transform – Resample using (n × n) grid:

This algorithm is similar to the simple pixel-to-pixel algorithm above except that each (x, y)

pixel is divided into n
2
 squares, i.e. a (n × n) grid, and each sub-pixel is mapped separately to

the polar coordinate image. Each sub-pixel is assumed to have the same intensity, which is

1/n
2
 times the intensity of the (x, y) pixel. This algorithm will be n

2
 times slower than the

previous algorithm, but the artefacts will be reduced. This is the preferred algorithm, but it is

up to the user to use an appropriate value of n as a compromise between speed and reducing

artefacts.

Inverse Transform – Interpolation

Forward Transform – Simple pixel-to-pixel

Forward Transform – Resample using (10 × 10) grid

The above images are polar coordinate image of the synthetic VMI image using the different

transformation methods. The horizontal direction represents the radius, and the vertical direction

represents the angle. The images produced are calibrated, so you use the cursor feature to directly

read off (r, θ) values from the image. Note that the lower left corner is the origin, which in this

example corresponds to a (r, θ) calibrated value of (0.25, 1.0). That is, for this pixel, r ranges from

0→0.5 and θ ranges from 0→2, as given by the step sizes used in the transformation.

4) Divide intensities in the polar coordinate image by r. This is necessary since we desire the radial

function along a line emanating from the centre of the original distorted image, whereas currently

the polar coordinate image displays at each radius the integrated intensity over an annulus sector

defined by the radial and angular step size. The Jacobian dxdy = rdrdθ. means we have to divide the

intensities in the polar coordinate image by r.

From the menu, select VMI→Divide by r Polar Coordinate Image…

Applying this to the polar coordinate image using the (10 × 10) grid we get the scaled version:

Note that this image has the same calibration as the original polar coordinate image.

5) Apply the Inverse Abel Transform. This process will convert the above image into an image that

has more Gaussian-like peaks to aid in the fitting process. This transform will only return the

correct velocity distribution for two angles only (the two angles perpendicular to the laser

polarisation), but is useful for fitting the angular dependence of the distortions.

From the menu, select VMI→Inverse Abel Transform…

For this step the cylindrical symmetry axis is the leftmost column of pixels, so Y-Axis (Up-Down)

must be selected. Since the window requires the “Image Centre” to be in FITS “Axis Index”

coordinates, then X has to be set to 1 (this is the first column of pixels). Not that the calibrated r

value cannot be used. There is currently only one method of performing the Inverse Abel

Transform, that being the method described by Hanson and Law.

After applying the Inverse Abel Transform to the scaled radial plot image we get:

Note that the polar coordinate calibration remains on the image. Also the algorithm produces a lot

of noise near r = 0, some of which is negative, thus you will need to adjust the lower display

intensity to 0.

6) Extract each line (wiggly line). The inbuilt fitting algorithm can only fit Gaussian wiggly line at

a time. Therefore each line needs to be extracted and analysed individually. The easiest way to do

this is to press on the rectangular selection tool and draw rectangle over the lines you wish to

extract. You can look at the coordinates in the lower information bar to make sure you start the

rectangle at pixel y = 1 and draw a rectangle to the full height. (It doesn’t matter if you can’t get the

cursor positioned exactly right because you can manually enter the coordinates in the Extract

Options dialogue box.) Once the rectangle has been drawn, select from the menu

Image Manipulation→Extract Region…

The values in the dialogue box correspond to those given by the rectangular selection on the image.

To extract the entire angular range, make sure the “Start Y” is set to 1, i.e. the first θ value, and the

“Height” is set to the height of the image (as given at the top of the left hand tool bar). After

pressing “Extract” the selected region becomes a separate image, and, importantly, is still calibrated

correctly.

7) Mask unwanted data. It may be impossible to cleanly select a rectangular region without

interference from adjacent rings. In these cases, it is necessary to invalidate data that belongs to

other rings. Select the rectangular selection tool and draw a rectangle over the data that you wish to

invalidate. From the menu select Data Manipulation→Invalidate Selection. The pixels within the

selection are converted to Not A Number (NAN) and are displayed as grey on the image. Invalid

pixels are ignored during the next fitting step. It will be likely that many small rectangular regions

are necessary to invalidate the unwanted feature. As an example, below left is an image that

contains a strong and weak peak that cannot be separated using a simple rectangle. By invalidating

just the right hand wiggle we get the centre image and by invalidating the left hand wiggle we get

the right-hand image. These masked images can now be fitted separately to determine the

coefficients of each wiggle.

8) Fit the wiggly lines to a trigonometric series. A wiggly line in a polar coordinate image can be

fitted to a Gaussian function where the position of the Gaussian varies with angle. The functional

form used in this program is:

 c
rr

IrI
g














 


2

2

2

)(
exp)(),(




where gr is the angle dependant centre radius (position) of the Gaussian given by:

  




N

n

nng nBnArr

1

0 cossin)(

where 0r is the average radial position of the wiggly line, N is the number of trigonometric terms to

include. The angular intensity is given by the standard anisotropy function:

 







)1)(cos3(

2

1
1)(2

0  II

From the menu, select VMI→Trig Fit Polar Coordinate Image…

The left hand side of the form contains controls to perform the non-linear least squares fitting. The

left hand image is the image to be fit and the current best fit (currently blank) is on the right.

Change the number of trigonometric terms desired for the fit by entering the number in the top box.

Initial starting values can be entered in directly, and then pressing “calculate” to update the fit

image, or, a more convenient way is to press the “Auto Guess” button. The auto guess provides

estimates for the intensity, standard deviation and position of the Gaussian function, while setting

all other parameters to zero. (In the current example, the line is so wiggly that the guess is far from

perfect, but will be adequate as starting parameters.)

To perform the fit, press the “Fit Image” button. When the initial guesses for the trig terms are

zero, it is recommended to select the “Iteratively Fit Trig Terms” checkbox. This causes the fitting

algorithm to first set all trig terms to zero and then performs a fit with only 1 trig term (i.e. sin(θ)

and cos(θ) terms) . The result of the fit is used as the initial parameters for a subsequent fit that

includes 2 trig terms (i.e. sin(θ), cos(θ), sin(2θ) and cos(2θ) terms).This process is repeated by

iteratively rolling in higher order terms until the max number of desired terms is reached.

If there are values that don’t need to be fitted, for example if one wants to force a particular trig

term to be zero, then uncheck the box next to the fitted value.

After fitting, the best-fit values and the 1σ uncertainty returned from the non-linear least squares

algorithm is displayed. This can be copied to the system clipboard (by pressing “Copy to

Clipboard”) for pasting into a spreadsheet. Alternatively the current best-fit values can be saved to

a file.

To determine the max number of trig terms required, the size of the value should be compared with

the uncertainty. A large uncertainty indicates that the term is ill-determined and not required.

If you desire to keep the best fit image, place a tick mark next to “Keep Calc Image” before

pressing the “Close” button. This fit image contains in the image header information regarding the

best-fit parameters.

9) Plot the coefficient for the sin(θ) and cos(θ) terms to determine a better image centre. By

determining the trigonometric coefficients of several rings at different radii, a plot of the sin(θ) and

cos(θ) terms as a function of radius can be used to determine a better centre for the distorted image.

Since at r = 0 the angular deformation vanishes, extrapolating these plots to r = 0 gives the trig term

values arising from the incorrect choice of centre and hence the correction required.

From the above graph, a linear fit results in an intercept for the sin(θ) term of −1.04 pixels and a

cos(θ) intercept of 2.01 pixels, meaning that you need to add (2.01, −1.04) to the current centre.

Since the initially chosen centre in Step 1 was (299, 302), a more refined determination of the

centre is (301.01, 300.96). This is very close to the actual centre of (301,301).

10) Repeat steps 2 to 9 using the updated centre location. The above procedure should be repeated

with the improved centre and repeated until the plots of sin(θ) and cos(θ) terms versus radius have

intercepts of zero within the fitting uncertainty.

11) Plot the coefficients for each of the trigonometric terms as a function of radius. The

circularisation procedure implemented in this program assumes that the distortion is linear with

radius. The program requires the slope of plot for each trigonometric coefficient versus radius. It is

best to fit a linear function that is forced to go through zero, since there can’t be any distortion at

r = 0.

12) Circularise the image. After the slopes in the graph above are determined, the distorted image

can be circularised. The following functional form is used to characterise the distortion:

-10

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200 250 300

sin() term

cos() term

T
ri

g
o
n

o
m

et
ri

c
C

o
ef

fi
ci

en
t

/p
ix

el
s

radius /pixels

-12

-10

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200 250

sin() term

cos() term

sin(2) term

cos(2) term

sin(3) term

cos(3) term

sin(4) term

cos(4) term

T
ri

g
o
n

o
m

et
ri

c
C

o
ef

fi
ci

en
t

/p
ix

el
s

radius /pixels

  













 



N

n

nnud nbnarr

1

cossin1)(

where)(dr is the radius of a pixel on the distorted image, ur is the corresponding corrected

(undistorted) radius and the coefficients na and nb are the slopes from the plots obtained in Step

11. The circularisation procedure involves rearranging this equation to determine correct radius, ur

, for the pixels on the distorted image. Select the distorted image and from the menu select

VMI→Circularise Image…

Set the centre x and y values, and the number of trigonometric terms you have used in the analysis.

Enter all the na and nb terms. This can be done manually, or conveniently, by pasting from the

system clipboard. Different transformation methods are available and were discussed in Step 3. The

circularised test image is shown below.

After the image has been generated, you may wish to set the centre of the image using the menu

VMI→Set Centre…

13) Confirm the circularity of the image. It is a wise idea that after the image has been circularised,

that a polar coordinate plot is generated to ensure there are no wiggly lines present:

If all the features in a polar coordinate plot are straight vertical lines then the deformed image has

been circularised successfully. At this point the corrected image can be saved and used as input for

standard VMI analyses that you may already use and are familiar with. Alternatively, you can use

the analysis tools in this program as detailed below.

14) Perform Inverse Abel Transform of the corrected image. Select the undistorted image and from

the menu select VMI→Inverse Abel Transform…

Choose the cylindrical symmetry axis that matches your experimental configuration. If the laser

polarisation is vertical in the image, then select Y-Axis and enter the centre x position of the image

(the position may be prefilled if you have set the centre in the image). For a laser polarisation that

is horizontal in the image, select X-Axis and enter the centre y position of the image. There is

currently only one method of performing the Inverse Abel Transform, that being the method

described by Hanson and Law.

After the image is generated you may (will) need to adjust the display intensities. The centre stripe

noise contains large positive and negative values which results in a low contrast image if using

min/max values for the intensity display. It is suggested to set the lower intensity to 0 and reduce

the max intensity until the image looks acceptable.

15) Generate polar coordinate plot of the Inverse Abel Transform image. Follow the procedure

outlined in Step 3 to generate the polar coordinate image.

16) Divide the intensities by r. Since the polar coordinate transformation integrates the original

image over an annulus sector defined by the radial and angular step size, the intensities require

dividing by r to obtain the radial distribution function of the Inverse Abel Transformed image. (See

Step 4 for further details.) From the menu, select VMI→Divide by r Polar Coordinate Image…

(Note that this divide-by-r step could be done following extraction of the spectrum instead)

The centre noise strip in the Inverse Abel Transform image results in horizontal lines in the polar

coordinate image the angle of the laser polarisation (90° and 270° in the current example). By

using the rectangular selection tool and the graph (projection/cross-section) tool the extent of the

noise becomes apparent.

17) Invalidate the horizontal noise pixels. Use the rectangular selection tool to invalidate desired

pixels as outlined in Step 7.

18) Extract the radial summed radial intensity. The radial part of the probability distribution

function is generated by vertically integrating the polar coordinate plots, i.e. the projection onto the

radial (horizontal) axis. Using the rectangular selection tool and the graph (projection/cross-

section) tool, a rectangle can be drawn over the entire image to display the radial spectrum at the

bottom. To save this spectrum, right click in the graph window and select “Save Plot”. Use the

save dialogue window to save the spectrum. The spectrum is saved as a comma separated variable

file where the first column is the FITS index value (1→width), the second column is the calibrated

value (r in units of the original image pixels) and the final column is the intensity value.

Note, in the above image the graph of the projection onto the θ axis (i.e. right had graph) is

contaminated with the large amount of noise approaching r = 0.

19) Analyse the spectrum. The spectrum generated above is the radial function of the Inverse Abel

Transform image:

0

50

100

150

200

250

0 50 100 150 200 250 300

Radial Function

 I
n

te
n

s
it
y

 radius /pixels

By integrating the radial function over the Newton sphere (ie multiplying the intensities in the

spectrum by r
2
) one generates the total probability distribution as a function of r, and therefore a

speed probability distribution. Since the spectrum is a probability distribution it should be scaled so

the integral of the function is equal to 1.

Usually spectra are displayed on an abscissa that has energy units. The energy of the electron/ion is

proportional to pixels squared, and since we are plotting a population distribution we need to divide

the intensities in the spectrum by the Jacobian for the speed to energy transformation. That is, the

intensities need dividing by 2r to ensure the integral of each peak remains unchanged.

The last step in the analysis is to apply the energy calibration to the image (and scaling the intensity

appropriately to ensure the integral is 1).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300

Normalised Probability Distribution

P
ro

b
a
b

ili
ty

 D
e

n
s
it
y

 radius /pixels [proportional to speed]

0

5 10
-5

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 20000 40000 60000 80000

Normalised Probability Distribution

P
ro

b
a
b

ili
ty

 D
e

n
s
it
y

 radius
2
 /pixels

2
 [proportional to energy]

