
FITS Viewer and VMI Analysis 

Version 4.0 
 

FITS Viewer and VMI analysis, Version 4.0. This program was written to display and analyse 

2−dimensional data, in particular for the analysis of Velocity Mapped Imaging (VMI) data and 

2−Dimensional Laser Induced Fluorescence (2D-LIF) data. The program uses the Flexible Image 

Transport System (FITS) file format for loading, processing and saving of images, although images 

stored as text may also be imported. The program incorporates many functions to process VMI 

images. In particular, routines are provided to perform the Inverse Abel Transform on experimental 

images and generate polar coordinate images of the raw and transformed data. In addition, for raw 

VMI images that are affected by non-circularity due to stray electric and magnetic fields, routines 

are provided to determine such distortions and produce a circularised (undeformed) image. This 

program has been developed and used at Flinders University since 1998 for analysis of VMI and 

2D-LIF data. The circularisation algorithms used in this program are described in [J. R. Gascooke, 

S.T. Gibson and W.D. Lawrance, “A "circularisation" method to repair deformations and determine 

the centre of velocity map images”, J. Chem. Phys. 147, 013924 (2017) (DOI 10.1063/1.4981024)]. 

 

When this program is used to analyse data used in publications, it should be referenced as [J.R. 

Gascooke and W.D. Lawrance, FITS Viewer and VMI Analysis: A Program for Analysing and 

Circularising VMI Images, DOI 10.4226/86/59278ab872838]. 

 

Disclaimer: 

This program was first developed in 1998 and continuously modified/improved over the last 19 

years.  Although a lot of effort has gone into making the program stable and correct, it hasn’t been 

tested under all conditions and possibilities.  Therefore, it cannot be guaranteed that the program 

will do what you want it to do!   Use the program at your own risk.  If, through using this software, 

you become aware of bugs then please contact the author, Jason Gascooke via email: 

Jason.Gascooke@flinders.edu.au.  Suggestions for possible improvements would also be useful, but 

cannot be guaranteed to be incorporated.  

 

FITS Images 

 

This software uses the “Flexible Image Transport System” (FITS) file format for processing images.  

This is a file format popularised by the astronomy community and has several advantages over 

other image file formats.  The file structure has a readable header (ASCII) that is used to describe 

the type, size, calibration of the image and any other desired information about the image.  The 

image format allows up to 999 dimensions of data, and the data can be 8, 16, 32, 64 bit integer data 

or 32, 64 bit floating point data.  This program can read in all these dimensions if contained in the 

image but will only display the first two dimensions as an image with the remaining dimensions set 

to their first element.  Support for 64 bit integer data is not yet available in this program. 

 

The FITS format is different to other image formats in that there is no information in the file 

describing how to display the image (i.e there is no colour information).  Instead, the purpose of the 

FITS file format is to contain data, and it is the purpose of a FITS viewer to present the data in the 

form of an image. (Viewers do have the option of incorporating their own display information in the 

file header, but this is program dependant). 

 

It is generally accepted that 2-dimensional FITS data should be displayed in the 1st quadrant of a 

Cartesian plane. That is, the origin located at the lower left corner, and the axis increasing up (y 

axis) and to the right (x axis).  Also, it is accepted that the 1st dimension of data relates to the x 



direction and the 2nd dimension is the y direction. These conventions aren’t prescribed in the FITS 

standard since FITS images contain physical data as pixels (voxels) and not a display image. 

 

Unlike most image formats that have their origin of (0, 0) at the top right corner, the origin for fits 

coordinate is (1, 1) and, as just mentioned, is located at the lower left corner.  This must be taken 

into account when comparing pixel positions with other programs.  Moreover, for a FITS pixel, the 

axis index is accepted to be the centre at the centre of the pixel, so the (1, 1) pixel extends in the x 

and y directions from 0.5 to 1.5.  In computer graphics, the origin pixel (0, 0) ranges from 0 to 1 in 

the x and y directions.  This is shown diagrammatically below: 

 

 
  FITS coordinates    Standard computer display coordinates 

 

 

For more information on FITS specifications, see: 
 

FITS Working Group, “FITS Standard 3.0” (2008) accessible at http://fits.gsfc.nasa.gov/standard30/fits_standard30.pdf 

E.W. Greisen and M.R. Calabretta, “Representations of world coordinates in FITS”, A&A, 395, 1061 (2002). DOI: 

10.1051/0004-6361:20021326 

 

Running the Software 

 

The program is a stand-alone executable that doesn’t require additional installations.  It should run 

under all Windows operating systems starting with Windows 98.  The program doesn’t save any 

information to the registry nor does it save a configuration file. 

 

The software can copied to any directory and ran from this location (if permissible by local 

permissions). Just double click on the program from within windows browser, or make a short cut 

on the desktop or Start menu.  It is useful to associate files with extensions ".FITS" and ".FTS" to 

this program, so you can simply double-click on a FITS image file and load it into the viewer. 

 

When running, the program can display a number of images within the main window. An example 

screenshot of the program is shown below, where two images have been loaded. 
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Side ToolBar 

 

 

Image data type and dimensions 

Button to display the 

FITS Header 

Slider to change the 

maximum display value 

Slider to change the 

minimum display value 
Minimum slider value 

Minimum display value 

Maximum slider value 

Maximum display value 

Colour scheme look up table 
Reverse colour scheme 
Use logarithm transfer 

function 
Logarithm transfer function 

factor 

Superimpose a circle on the 

image. 
Display graph of crosshair 

or rectangular selection 

Crosshair or 

rectangular selection 



“Image Info” section contains: 

 – the type of data that is displayed (i.e. number of bits and integer vs float),  

 – a button to display a window with the current FITS header (see section on FITS headers)  

 

“Image Intensity” section contains:  

 – controls to modify the appearance of the selected image. 

The minimum and maximum display values refer to the array values (intensities) in 

the image that correspond to the minimum and maximum colours in the colour table.  

The display values can be changed by sliding the slider bar up and down.  Note, that 

the minimum slider value can’t go above the maximum slider bar value. 

Min and max display values can be entered manually followed by pressing the 

return/enter key. 

The min and max limits for the slider bar values can be modified by manually entering 

the value in the “Maximum/Minimum slider value” followed by the return/enter key. 

When an image is initially displayed, the minimum and maximum slider values are set 

to the minimum and maximum values in the array data of the image.  

 – buttons to change minimum and maximum display values to predefined values, either to 

the min and max values in the image via the “MinMax” button, or a best guess using 

statistical information derived from the image by using the “Auto” button. 

 

“Colour Table” section contains: 

 – dropdown box to allow selection of different colour look up tables.  

 – checkbox to reverse the order of colours in the lookup table.  

 – checkbox and slider to select a logarithm transfer function, and the a logarithm factor that 

describes the amount of “logness’ of the transfer function (a value of 1.0 represents a linear 

function and large values cause the colours change much more rapidly for low intensities in 

the image).  Note that after selecting log function, the maximum slider value may need to be 

increased significantly to obtain a suitable image.  

 

Underneath the above sections are buttons to activate image tools, including: 

 – crosshair button allowing a cross to be placed on the image. The position of the cross can 

be moved by left-clicking the mouse, or by using the keyboard. Left, right, up and down 

arrow keys move the crosshairs by 1 pixel.  If the Ctrl key is held down at the same time as 

pressing left, right, up or down then the crosshairs move by 10 pixels. 

 – rectangular selection button allows a rectangle to be selected on the image by left clicking 

the mouse and dragging a rectangle over the image while holding the left mouse button 

down. 

 – graph button that displays a graph below and to the right of the image that plots the cross-

section if crosshairs are selected, or, when rectangular selection is used the projection of the 

data in the rectangle is plotted.  The graph can be exported by right clicking in the graph 

window and selecting “Save Plot”. 

 – button to superimpose a circle on the image, which can be used as a guide to determine 

approximate centre and radius of circular images. The position of the circle is moved by 1 

pixel at a time by pressing left, right, up and down arrow keys.  If the Ctrl key is held down 

at the same time as pressing left, right, up or down then the crosshairs move by 10 pixels.  

The radius of the circle is changed by holding down the shift key while pressing the 

left/right keys (and the ctrl key to increase the radius in bigger steps).  Values of the circle 

centre and radius is given in the bottom status bar. 

 

  



Lower Information Bar 

 

 

The current cursor position, or crosshair position on the image, and its associated data value 

(intensity) is displayed in the lower information bar. Since the FITS file format allows calibration of 

each axis as well as the values in the image array (intensities) the raw position and array value is 

shown, along with their calibrated values (including units).  Note that FITS images have their origin 

as (1, 1) and it is customary (but not in the standard) that the origin is located at the lower left pixel.  

This is different to the usual display coordinates where (0,0) refers to the top left pixel. 

 

Clicking on the “Axis Parameters” button brings up a window that allows the setting of calibration 

information, such as that displayed below.  These allow the changing of FITS header values 

associated with axis calibration. 

 

 
 

Program Variable FITS keyword 

Label CTYPEn 

Units CUNITn 

Scale CDELTn 

Reference Pixel CRPIXn 

Value at Reference Pixel CRVALn 

 

In this example the y axis represents Absorption Wavelength in units of nm.  Each pixel steps by 

0.0010016 nm.  Pixel number 1 (the first pixel) is the reference pixel and corresponds to a 

wavelength of 270.11948 mn.  Note that the reference pixel need not be an integer value.  In the top 

Calibrated x and y values 

FITS index x and y values. 

Pixel (x = 1, y = 1) refers to 

bottom left corner pixel. 

Change axis calibration 

Display x and y coordinates. 

Pixel (x = 0, y = 0) refers to 

top left corner pixel. 

Calibrated value for 

the current pixel 

Raw value in the 

image data array Intensity 

calibration 



right corner is a reduced size image with the calibrated values of the image extremes displayed 

underneath and to the left of the image. 

 

The calibrated axis value at a particular index is given by: 

 

 Calibrated Value = (index − CRPIXn) * CDELTn + CRVALn 

 

Note that the first pixel has an index = 1. 

 

Clicking on the “Intensity Parameters” button produces a window that allows the calibration af the 

data array (intensity) values. These allow the changing of FITS header values associated with 

intensity.  This is really only of any benefit for integer data. 

 

 
 

Program Variable FITS keyword 

Scale BSCALE 

Offset BZERO 

Units BUNIT 

 

In this example, the data represents temperature, where the array values (intensities) are integers 

that are converted to values in Kelvin by multiplying by 0.1953125 and adding a 273.15K offset. 

  

 

  



Menu Items 

 

File Menu 

 

 
 

 New   Disabled. 

 Open…   Allows selection of a FITS image to view. 

 Close  Closes Image. 

 Save  Disabled. 

 Save As… Allows user to save the FITS image. 

 Import Data Allows the importation of a greyscale bitmap file (*.BMP) or from an ASCII 

file containing delimited text.  The delimiter may be a space, comma, or a tab.  

Header lines that don’t start with a numerical value are ignored. 

 Print Prints the image in a rudimentary way.  It is suggested that the copy function 

is used instead and the image pasted into an application capable of printing 

images. 

 Exit Exits the program 

 

Edit Menu 

 

 
 

 Cut Disabled. 

 Copy Copies the current image bitmap into the clipboard so it can be pasted into 

other applications. 

 Paste Disabled. 

 

 

Display Menu 

 

 
 

The Display menu contains a menu item to display alternate units in the lower information bar.  

Currently there is only one option and that is to display nm units in cm
−1

.  When selected a check 

box will appear in the lower information bar to turn on and off unit conversion. 

 

  



Data Manipulation 

 

 
 

 Invalidate Selection Invalidates the current point (for crosshair selection) or points within a 

rectangular region (for rectangular selection) by changing the data 

array value (intensity) to NAN (Not A Number). 

 Clear Selection Zeros the current point (for crosshair selection) or points within a 

rectangular region (for rectangular selection). 

 Statistics… Shows a window giving statistics about the image.  If a rectangular 

region is selected, then the information only pertains to data points 

within the rectangle. 

 

Image Manipulation 

 

 
 

 Extract Region… Brings up a window that allows the user to extract a region from the 

image.  If a rectangular selection is active, then the window pre-

populates the values with those of the rectangular selection. 

 Swap x and y Axes Switches the x and y axis.  The pixel at the lower left corner, i.e. (1,1) 

remains the same. Axis calibrations are preserved. 

 Flip Vertically Flips the image vertically. Axis calibrations are preserved. 

 Flip Horizontally Flips the image horizontally. Axis calibrations are preserved. 

 Rotate Clockwise Rotates the image clockwise. Axis calibrations are preserved. 

 Rotate Anticlockwise Rotates the image anticlockwise. Axis calibrations are preserved. 

 Horizontal Shear… Displays a window that allows an image to be sheared (currently only 

horizontal shearing is available).  Shearing is useful in the analysis of 

2 dimensional laser induced fluorescence images. 

 Combine 2 images… Opens a window to allows two FITS images to be combined into a 

single image.  Many options exist, including the use of FITS 

calibration to position 2 images relative to each other. 

 

2D-LIF (2-dimensional laser induced fluorescence) 

 

 
 

 Re-map axes (nm <−> cm-1) Converts axes that are in nm to axes in cm
−1

 via a nonlinear 

transformation (and vice versa). 

 

  



VMI (velocity mapped imaging) 

 

 

 
 

 Set Centre… Allows setting of the centre of the VMI image. 

 Inverse Abel Transform… Generates the Inverse Abel transform image. 

 Create Polar Coordinate Image… Generates a polar coordinate image.  

 Divide by r Polar Coordinate Image… Divides the intensity of each pixel in image by the 

radial value (assumes the radial coordinate is in the x 

direction and uses the axis calibration to determine 

r). 

 Trig Fit Polar Coordinate Image… Fits a single wavy line in a polar coordinate image to a 

series of sines and cosines. 

 Circularise Image… Corrects radial distortions of an image using a series of 

sine and cosine deformation parameters. 

 

Window 

 

 
 

 Cascade Cascades all open windows within the viewer. 

 Tile Tiles all open windows within the viewer. 

 Minimise All Minimises all windows. 

 

Help 

 

 
 

 About Provides more information about the program. 

 

  



FITS Header Information 

 

The start of a FITS file contains a ASCII readable header.  The FITS specification demands that 

some keywords are mandatory. 

 

A typical example is given below: 

 

 
 

In this example, the SIMPLE keyword is set to the Boolean value TRUE, indicating it is a standard 

FITS format file.  The BITPIX keyword refers to the type of data in the image.  Positive numbers 

contain integer data and negative numbers contain floating point data.  The absolute value of this 

number defines the number of bits in each value.  Thus, the above image contains 32 bit floating 

point data.  NAXIS defines the number of axes, which can range from 1 to 999.  NAXIS1 and 

NAXIS2 defined the number of indices in each axis (ie width and height for a 2D image).  

CDELTn, CRPIXn and CRVALn, refer to calibration parameters of the axes (see the Axis 

Parameters section above).  Axes can also have labels and units as given by CTYPEn and  

CUNITn.  Other keywords in the FITS specification may appear in the header, as well as custom 

keywords (for example centres of VMI images is given by the VMI_CX and VMI_CY keywords in 

the program). 

 

More generic information can be included via HISTORY, COMMENT and blank keywords that 

allow information about the image, including how it was generated to be saved within the FITS file. 

 

The header must end with the END keyword. 

  

  



Circularisation of VMI images 

 

In this section we will show how to apply circularisation to a very distorted synthetic VMI image. 

 

1) Determine a best guess estimate for the image centre.  There are numerous methods that could be 

used, for example one could simply take the average of the ring coordinates at the top, bottom, left 

and right, or least squares fitting several points chosen around a ring to the equation of a circle.  

Alternatively a rough centre can be determined using the circle feature in the program and manually 

moving the circle position and radius such that it looks centred around a ring.  This is done in the 

image below, and the centre of the circle (and radius) is given in the bottom status bar. See 

discussion of the side tool bar above for more information on the circle feature.   

 

 
 

Only an approximate image centre is required to start with, since the circularisation algorithm 

returns a better estimate of the image centre. 

 

2) Set the centre of the image.  This step is optional, but will save you having to constantly re-enter 

the centre in future processing steps.  By setting a centre, two keywords (VMI_CX and VMI_CY) 

are added to the image header, and used in other VMI analysis. From the menu, select 



 VMI→Set Centre… 

 

 
 

The above dialogue box appears and the image centre coordinates can be entered.  Note that the 

coordinates do not have to be integers.  A check box is also on the dialogue box that allows a 

calibration to be put on the image so that the x and y cursor coordinates displayed on the lower 

information bar are relative to the image centre. 

 

3) Generate a polar coordinate plot of the distorted image.  Select from the menu 

VMI→Create Polar Coordinate Image… 

 

 
 

If an image centre was set in Step 2, then it is automatically populated in the window, otherwise 

default values are used and you will need to manually enter the centre.  The step sizes (bin sizes) for 

the radial and angular coordinate can be changed.  A radial step size of 0.5 pixels and angular step 

of 2 degrees generally gives a good image. There are 3 transformation methods to choose from: 

 

Inverse Transform – Interpolation : 

For each (r, θ) pixel on the polar coordinate image, the corresponding (x, y) value on the 

original image is determined by 2-dimensional linear interpolation of the original image.  The 

value is scaled by the Jacobian of the transformation to account for the larger drdθ area as r 

increases.  However, even with this Jacobian applied, interpolation can result in the integrated 

intensity of the polar coordinate image being different to the original image (in principle, it 



should be the same – you can’t lose electrons!).  This method is quick, and provides a smooth 

transform if the original image is smooth.  It gives bad results on large noisy images.  

 

Forward Transform – Simple pixel-to-pixel : 

For each (x, y) pixel on the original image, the corresponding (r, θ) polar coordinate is 

determined and the intensity of the (x, y) pixel is copied over to the  (r, θ) pixel in the polar 

coordinate image.  This algorithm is a quick and preserves the integrated intensity of the 

original image.  However, the algorithm will introduce artefacts due to pixellation, where 

some (r, θ) pixels in the polar coordinate image don’t have corresponding pixels in the  (x, y) 

original image. 

 

Forward Transform – Resample using (n × n) grid: 

This algorithm is similar to the simple pixel-to-pixel algorithm above except that each (x, y) 

pixel is divided into n
2
 squares, i.e. a (n × n)  grid, and each sub-pixel is mapped separately to 

the polar coordinate image.  Each sub-pixel is assumed to have the same intensity, which is 

1/n
2
 times the intensity of the (x, y)  pixel.  This algorithm will be n

2
 times slower than the 

previous algorithm, but the artefacts will be reduced.  This is the preferred algorithm, but it is 

up to the user to use an appropriate value of n as a compromise between speed and reducing 

artefacts. 

 

 
Inverse Transform – Interpolation 

 

 
Forward Transform – Simple pixel-to-pixel 

 

 
Forward Transform – Resample using (10 × 10) grid 

 

The above images are polar coordinate image of the synthetic VMI image using the different 

transformation methods.  The horizontal direction represents the radius, and the vertical direction 

represents the angle.  The images produced are calibrated, so you use the cursor feature to directly 

read off (r, θ) values from the image.  Note that the lower left corner is the origin, which in this 

example corresponds to a (r, θ) calibrated value of (0.25, 1.0). That is, for this pixel, r ranges from 

0→0.5 and θ ranges from 0→2, as given by the step sizes used in the transformation. 



4) Divide intensities in the polar coordinate image by r.  This is necessary since we desire the radial 

function along a line emanating from the centre of the original distorted image, whereas currently 

the polar coordinate image displays at each radius the integrated intensity over an annulus sector 

defined by the radial and angular step size. The Jacobian dxdy = rdrdθ. means we have to divide the 

intensities in the polar coordinate image by r. 

From the menu, select VMI→Divide by r Polar Coordinate Image… 

 

Applying this to the polar coordinate image using the (10 × 10) grid we get the scaled version: 

 

 
 

Note that this image has the same calibration as the original polar coordinate image. 

 

5) Apply the Inverse Abel Transform. This process will convert the above image into an image that 

has more Gaussian-like peaks to aid in the fitting process.  This transform will only return the 

correct velocity distribution for two angles only (the two angles perpendicular to the laser 

polarisation), but is useful for fitting the angular dependence of the distortions. 

From the menu, select VMI→Inverse Abel Transform… 

 

 
 

For this step the cylindrical symmetry axis is the leftmost column of pixels, so Y-Axis (Up-Down) 

must be selected.  Since the window requires the “Image Centre” to be in FITS “Axis Index” 

coordinates, then X has to be set to 1 (this is the first column of pixels).  Not that the calibrated r 

value cannot be used.  There is currently only one method of performing the Inverse Abel 

Transform, that being the method described by Hanson and Law. 

 

After applying the Inverse Abel Transform to the scaled radial plot image we get: 

 



 
 

Note that the polar coordinate calibration remains on the image.  Also the algorithm produces a lot 

of noise near r = 0, some of which is negative, thus you will need to adjust the lower display 

intensity to 0. 

 

6) Extract each line (wiggly line).  The inbuilt fitting algorithm can only fit Gaussian wiggly line at 

a time.  Therefore each line needs to be extracted and analysed individually. The easiest way to do 

this is to press on the rectangular selection tool and draw rectangle over the lines you wish to 

extract.  You can look at the coordinates in the lower information bar to make sure you start the 

rectangle at pixel y = 1 and draw a rectangle to the full height. (It doesn’t matter if you can’t get the 

cursor positioned exactly right because you can manually enter the coordinates in the  Extract 

Options dialogue box.)  Once the rectangle has been drawn, select from the menu 

Image Manipulation→Extract Region…   

 

 
 

The values in the dialogue box correspond to those given by the rectangular selection on the image.  

To extract the entire angular range, make sure the “Start Y” is set to 1, i.e. the first θ value, and the 

“Height” is set to the height of the image (as given at the top of the left hand tool bar).  After 

pressing “Extract” the selected region becomes a separate image, and, importantly, is still calibrated 

correctly.  

 



 
 

7) Mask unwanted data.  It may be impossible to cleanly select a rectangular region without 

interference from adjacent rings.  In these cases, it is necessary to invalidate data that belongs to 

other rings.  Select the rectangular selection tool and draw a rectangle over the data that you wish to 

invalidate.  From the menu select Data Manipulation→Invalidate Selection.  The pixels within the 

selection are converted to Not A Number (NAN) and are displayed as grey on the image.  Invalid 

pixels are ignored during the next fitting step.  It will be likely that many small rectangular regions 

are necessary to invalidate the unwanted feature.  As an example, below left is an image that 

contains a strong and weak peak that cannot be separated using a simple rectangle.  By invalidating 

just the right hand wiggle we get the centre image and by invalidating the left hand wiggle we get 

the right-hand image.  These masked images can now be fitted separately to determine the 

coefficients of each wiggle. 

 

 
 

8) Fit the wiggly lines to a trigonometric series.  A wiggly line in a polar coordinate image can be 

fitted to a Gaussian function where the position of the Gaussian varies with angle.  The functional 

form used in this program is:  
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where 0r  is the average radial position of the wiggly line, N is the number of trigonometric terms to 

include.  The angular intensity is given by the standard anisotropy function:  
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From the menu, select VMI→Trig Fit Polar Coordinate Image… 

 



 
 

The left hand side of the form contains controls to perform the non-linear least squares fitting.  The 

left hand image is the image to be fit and the current  best fit (currently blank) is on the right.  

Change the number of trigonometric terms desired for the fit by entering the number in the top box.  

Initial starting values can be entered in directly, and then pressing “calculate” to update the fit 

image, or, a more convenient way is to press the “Auto Guess” button.  The auto guess provides 

estimates for the intensity, standard deviation and position of the Gaussian function, while setting 

all other parameters to zero.  (In the current example, the line is so wiggly that the guess is far from 

perfect, but will be adequate as starting parameters.)  

 

 
 

To perform the fit, press the “Fit Image” button.  When the initial guesses for the trig terms are 

zero, it is recommended to select the “Iteratively Fit Trig Terms” checkbox.  This causes the fitting 

algorithm to first set all trig terms to zero and then performs a fit with only 1 trig term (i.e. sin(θ) 

and cos(θ) terms) .  The result of the fit is used as the initial parameters for a subsequent fit that 

includes 2 trig terms (i.e. sin(θ), cos(θ), sin(2θ) and cos(2θ) terms).This process is repeated by 

iteratively rolling in higher order terms until the max number of desired terms is reached. 

 



If there are values that don’t need to be fitted, for example if one wants to force a particular trig 

term to be zero,  then uncheck the box next to the fitted value. 

 

 
 

After fitting, the best-fit values and the 1σ uncertainty returned from the non-linear least squares 

algorithm is displayed. This can be copied to the system clipboard (by pressing “Copy to 

Clipboard”) for pasting into a spreadsheet.  Alternatively the current best-fit values can be saved to 

a file. 

 

To determine the max number of trig terms required, the size of the value should be compared with 

the uncertainty.  A large uncertainty indicates that the term is ill-determined and not required. 

 

If you desire to keep the best fit image, place a tick mark next to “Keep Calc Image” before 

pressing the “Close” button.  This fit image contains in the image header information regarding the 

best-fit parameters.  

 

9) Plot the coefficient for the sin(θ) and cos(θ) terms to determine a better image centre.  By 

determining the trigonometric coefficients of several rings at different radii, a plot of the sin(θ) and 

cos(θ) terms as a function of radius can be used to determine a better centre for the distorted image. 

Since at r = 0 the angular deformation vanishes, extrapolating these plots to r = 0 gives the trig term 

values arising from the incorrect choice of centre and hence the correction required. 

 



 
 

From the above graph, a linear fit results in an intercept for the sin(θ) term of −1.04 pixels and a 

cos(θ) intercept of 2.01 pixels, meaning that you need to add (2.01, −1.04) to the current centre.  

Since the initially chosen centre in Step 1 was (299, 302), a more refined determination of the 

centre is (301.01, 300.96).  This is very close to the actual centre of (301,301). 

 

10) Repeat steps 2 to 9 using the updated centre location.  The above procedure should be repeated 

with the improved centre and repeated until the plots of sin(θ) and cos(θ) terms versus radius have 

intercepts of zero within the fitting uncertainty. 

 

11) Plot the coefficients for each of the trigonometric terms as a function of radius.  The 

circularisation procedure implemented in this program assumes that the distortion is linear with 

radius.  The program requires the slope of plot for each trigonometric coefficient versus radius.  It is 

best to fit a linear function that is forced to go through zero, since there can’t be any distortion at 

r = 0. 

 

 
 

12) Circularise the image.  After the slopes in the graph above are determined, the distorted image 

can be circularised.  The following functional form is used to characterise the distortion: 
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where )(dr  is the radius of a pixel on the distorted image, ur  is the corresponding corrected 

(undistorted) radius and the coefficients na  and nb  are the slopes from the plots obtained in Step 

11.  The circularisation procedure involves rearranging  this equation to determine correct radius, ur

, for the pixels on the distorted image.  Select the distorted image and from the menu select 

VMI→Circularise Image… 

 

 
 

Set the centre x and y values, and the number of trigonometric terms you have used in the analysis.  

Enter all the na  and nb  terms.  This can be done manually, or conveniently, by pasting from the 

system clipboard. Different transformation methods are available and were discussed in Step 3.  The 

circularised test image is shown below. 

 



 
 

After the image has been generated, you may wish to set the centre of the image using the menu 

VMI→Set Centre… 

 

 

13) Confirm the circularity of the image.  It is a wise idea that after the image has been circularised, 

that a polar coordinate plot is generated to ensure there are no wiggly lines present: 

 

 
 

If all the features in a polar coordinate plot are straight vertical lines then the deformed image has 

been circularised successfully.  At this point the corrected image can be saved and used as input for 

standard VMI analyses that you may already use and are familiar with.  Alternatively, you can use 

the analysis tools in this program as detailed below. 

 



14) Perform Inverse Abel Transform of the corrected image.  Select the undistorted image and from 

the menu select VMI→Inverse Abel Transform… 

 

 
 

Choose the cylindrical symmetry axis that matches your experimental configuration.  If the laser 

polarisation is vertical in the image, then select Y-Axis and enter the centre x position of the image 

(the position may be prefilled if you have set the centre in the image).  For a laser polarisation that 

is horizontal in the image, select X-Axis and enter the centre y position of the image.    There is 

currently only one method of performing the Inverse Abel Transform, that being the method 

described by Hanson and Law. 

 

 
 

After the image is generated you may (will) need to adjust the display intensities. The centre stripe 

noise contains large positive and negative values which results in a low contrast image if using 

min/max values for the intensity display.  It is suggested to set the lower intensity to 0 and reduce 

the max intensity until the image looks acceptable. 

 



15) Generate polar coordinate plot of the Inverse Abel Transform image.  Follow the procedure 

outlined in Step 3 to generate the polar coordinate image. 

 

 
 

16) Divide the intensities by r.  Since the polar coordinate transformation integrates the original 

image over an annulus sector defined by the radial and angular step size, the intensities require 

dividing by r to obtain the radial distribution function of the Inverse Abel Transformed image.  (See 

Step 4 for further details.)  From the menu, select VMI→Divide by r Polar Coordinate Image… 

 

 
 

(Note that this divide-by-r step could be done following extraction of the spectrum instead) 

 

The centre noise strip in the Inverse Abel Transform image results in horizontal lines in the polar 

coordinate image the angle of the laser polarisation (90° and 270° in the current example).  By 

using the rectangular selection tool and the graph (projection/cross-section) tool the extent of the 

noise becomes apparent. 

 

 
 

17) Invalidate the horizontal noise pixels. Use the rectangular selection tool to invalidate desired 

pixels as outlined in Step 7. 

 



 
 

18) Extract the radial summed radial intensity.  The radial part of the probability distribution 

function is generated by vertically integrating the polar coordinate plots, i.e. the projection onto the 

radial (horizontal) axis.  Using the rectangular selection tool and the graph (projection/cross-

section) tool, a rectangle can be drawn over the entire image to display the radial spectrum at the 

bottom.  To save this spectrum, right click in the graph window and select “Save Plot”.  Use the 

save dialogue window to save the spectrum.  The spectrum is saved as a comma separated variable 

file where the first column is the FITS index value (1→width), the second column is the calibrated 

value (r in units of the original image pixels) and the final column is the intensity value. 

 

 
 

Note, in the above image the graph of the projection onto the θ axis (i.e. right had graph) is 

contaminated with the large amount of noise approaching r = 0. 

 

19) Analyse the spectrum.  The spectrum generated above is the radial function of the Inverse Abel 

Transform image: 
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By integrating the radial function over the Newton sphere (ie multiplying the intensities in the 

spectrum by r
2
) one generates the total probability distribution as a function of r, and therefore a 

speed probability distribution.  Since the spectrum is a probability distribution it should be scaled so 

the integral of the function is equal to 1. 

 

 
 

Usually spectra are displayed on an abscissa that has energy units. The energy of the electron/ion is 

proportional to pixels squared, and since we are plotting a population distribution we need to divide 

the intensities in the spectrum by the Jacobian for the speed to energy transformation.  That is, the 

intensities need dividing by 2r to ensure the integral of each peak remains unchanged. 

 

 
 

The last step in the analysis is to apply the energy calibration to the image (and scaling the intensity 

appropriately to ensure the integral is 1).  
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